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Abstract

The available structural parameters, fundamental frequencies and enthalpies of formation
for oxirane, oxirene, dioxirane, oxetane, 1,2-dioxetane, tetrahydrofuran, 2,3-dihydrofuran,
2,5-dihydrofuran, furan, 1,2-dioxolane, 1,3-dioxolane, 1,2,3-trioxolane and 1,2,4-trioxolane
were critically evaluated and recommended values were selected. Molecular constants and
enthalpies of formation for some of the molecules were estimated, as experimental values for
these compounds are not available. Using the rigid-rotor harmonic-oscillator approximation,
this information was used to calculate the chemical thermodynamic functions Cpe, s®,
—(G® —H)/T, H® — Hy®, and the properties of formation, A;H®, A,G®, log K{®, to
1500 K in the ideal gas state at a pressure of 1 bar. The contributions to the thermodynamic
properties of compounds having inversion motion (oxetane, 2,3- and 2,5-dihydrofuran) or
pseudo-rotation (tetrahydrofuran and 1,3-dioxolane) have been computed by employing a
partition function formed by the summation of the inversional or pseudo-rotational energy
levels. These energy levels have been calculated by solving the wave equation using ap-
propriate potential functions. The calculated values of the thermodynamic functions are
compared with those reported in other works. Comparison with experimental data, where
such are available, is also presented. The thermodynamic properties for seven of the
compounds are reported for the first time.

INTRODUCTION

As an extension of our studies on the thermodynamic properties of cyclic
compounds [1-3], we proceed to calculation of the thermodynamic proper-
ties of heterocyclic compounds. This report involves the calculation of the
ideal gas thermodynamic properties of 13 monocyclic three-, four- and
five-membered oxygen compounds. (The thermodynamic properties of 17
six-, seven- and eight-membered oxygen heterocyclic compounds will be
presented in Part 2 of this series.) For half of these molecules, the thermody-
namic properties have been reported previously. Recently, more complete
and reliable information has become available on the structure and vibra-
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tional assignments and this information permits us to make more precise
calculations of the thermodynamic functions of some molecules and to
calculate the thermodynamic properties of others for the first time.

The available data on vibrational frequencies, structural parameters and
enthalpies of formation have been critically examined and the most reliable
values have been selected. The molecular constants and enthalpies of forma-
tion for some compounds were estimated in the present work, as the
experimental values for these molecules are not available, are incomplete, or
unreliable. The selected molecular constants are given in Tables 1, 2.

Based on the selected values of the molecular constants, the ideal gas
thermodynamic functions (heat capacity Cpe, entropy S, Gibbs energy
—(G*® — H,?)/T, and enthalpy (H® — H; ) were calculated by the stan-
dard statistical mechanical method using a rigid-rotor harmonic-oscillator
approximation. The enthalpy of formation A H ®(298.15 K) if any, was
taken from the data of Pedley et al. [4]; otherwise its value was estimated in
the present work using the incremental method, a variant of the group
additivity approach to calculations of A;H®. The accepted enthalpy of
formation, A;H ©(298.15 K), and the calculated thermodynamic functions,
have been used to calculate the enthalpies of formation A;H®(T), the
Gibbs energies of formation A;G®(T'), and the logarithm of the equilibrium
constant of formation log K, by the usual thermodynamic formulae.
(Subscript f denotes formation by the reaction xC(c, graphite) + yH,(g) +
z0,(g) = C,H,,0,,(g)). The procedures for calculation of the thermody-
namic properties are similar to those used in ref. 5. The fundamental
physical constants and thermodynamic properties of the elements in their
reference states used in the calculations were also taken from ref. 5. The
chemical thermodynamic property values for selected temperatures up to
1500 K for a pressure of 1 bar are given in Tables 3-15.

The inversion motion contributions to the thermodynamic properties for
oxetane, 2,3- and 2,5-dihydrofuran were calculated by use of the potential
function of type ¥V(x) = ax* + bx?. These potential functions are based on
experimentally observed transitions and barrier heights of the inversion
mode for the respective molecules. The contributions due to inversion were
obtained by summation over the energy levels calculated from the potential
functions.

The pseudo-rotational contributions to the thermodynamic properties of
tetrahydrofuran and 1,3-dioxolane were obtained by direct summation over
the energy levels, calculated with the potential function of type V(y)=
0.5[7;(1 — cos 2¢) + V,(1 — cos 4¢)].

Chiral conformations (C;, C,, D, symmetry) exist as an equimolal mix-
ture of two enantiomeric forms. The contribution to the thermodynamic
properties of two optical isomers is obtained by adding the entropy of
mixing S,5, =R In 2 to §® and —(G*® — Hy”)/T, which is equivalent to
assuming the effective symmetry number o, = 6/n, where o is the symme-
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TABLE 1

Symmetry groups and products of three principal moments of inertia for three-, four- and
five-membered ring oxygen compounds in their ground electronic state #

Molecule Point Symmetry Number of optical I, Izl x 10"
group number, ¢  isomers, n (g® X cm®)
C,H,0 Oxirane Gy 2 1 74.4
C,H,0  Oxirene Gy 2 1 45
CH,0, Dioxirane Gy 2 1 55.1
C;HcO  Oxetane Gy, 2 1 625
C,H,0, 1,2-Dioxetane Co 2 1 515
C,HO Tetrahydrofuran C, 2 1° 2979
C,HO  23-Dihydrofuran C; 1 1°¢ 2235
2,5-Dihydrofuran G, 2 1 2237
C,H,O Furan G, 2 1 1449
C,H 0, 1,2-Dioxolane G 2 2 2554
1,3-Dioxolane C, 2 1° 2334
C,H,0; 12,3-Trioxolane C; 1 1 2174
1,2,4-Trioxolane G, 2 2 1932

® Ground state statistical weight is equal to 1.

® Although tetrahydrofuran and 1,3-dioxolane have the non-planar structure of C, symmetry
for which 0 =2 and n = 2, the number of optical isomers n =1 is given in the Table due to
the fact that the molecules are undergoing restricted pseudo-rotation through their planar
configuration (C,, symmetry, ¢ =2, n =1).

¢ Although 2,3-dihydrofuran has the non-planar conformation of C; symmetry for which
o =1 and n =2, the number of optical isomers n =1 is given in the Table due to the fact
that the molecule is undergoing inversion through its planar form (C, symmetry, o =1,
n=1).

try number and n (= 2) is the number of optical isomers. For this reason,
Table 1 shows the number of optical isomers together with other molecular
constants.

Uncertainties in the calculated thermodynamic properties (Table 16) were
obtained by taking into account the inaccuracy of the selected molecular
structural and spectroscopic data, and the inaccuracy due to deviation from
the rigid-rotor harmonic-oscillator model. The procedure for the approxi-
mate evaluation of these uncertainties was described previously [S]. Uncer-
tainties in the adopted enthalpies of formation (Table 16) were taken from
the data of Pedley et al. [4] or were estimated in the present work.

Comparisons of the calculated and experimental entropy and heat capac-
ity values are given in Tables 17 and 18, respectively.

OXIRANE
The molecular structure of oxirane has been investigated by electron

diffraction [6], microwave spectroscopy [7-9] and ab initio calculations
[10-12]. From microwave measurements of rotational spectra of ten isotopic
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species of oxirane, Hirose [9] has determined the rotational constants and r,,
r,, and r, structures. These structural parameters are in good agreement
with those obtained from previous microwave studies and calculated by the
ab initio method. The product of the principal moments of inertia given in
Table 1 was calculated using the rotational constants of Hirose [9].

The IR and Raman spectra of oxirane have both been the subject of a
number of investigations [13-24]; and there have been a number of normal
coordinate analysis [17,20,23,25-28] and semiempirical and ab initio calcula-
tions [11,29-33]. Until now, the vibrational assignments published by Cant
and Armstead [17] have been considered the most reliable. However, differ-
ent authors have proposed considerably varying values for v,(A4,), vg(A4,),
and »,,(B,), for which no direct spectral evidence has been obtained. The
fundamentals presented in Table 2 are those obtained by Cant and Armstead
[17] (except for »,, vy and »;,). The values of », and »; were estimated
according to normal coordinate analysis [20] and ab initio calculations
[11,31,32]. For »,,, the value obtained from high-resolution IR spectrum [24]
was accepted.

The enthalpy of formation for oxirane (Table 3) was taken from the data
of Pedley et al. [4].

The ideal gas thermodynamic properties for oxirane are given in Table 3.
The calculated value of $°(298.15 K) is in good agreement with the
calorimetric values [34,35] and with other entropy values calculated by the
statistical method [35-42] (Table 17). Likewise our heat capacity values are
in good agreement with the experimental values [43] and with the reported
statistical values [35,37,39-42] (Table 18).

OXIRENE

There are no experimental data on the rotational constants or the molecu-
lar structure of oxirene. The geometrical structure of oxirene was calculated
by semiempirical [44,45] and ab initio [46—51] methods. The product of the
principal moments of inertia (Table 1) was calculated using the estimated
structural parameters: r(C-0)=1.49+0.05 A; r(C-H)=1.071£0.02 A;
r(C=C)=1.27 £ 0.05 A; and Z(H-C=C) =162 £ 5°. These values are close
to those obtained by Tanaka and Yoshimine [48] and Novoa et al. [51] from
ab initio calculations. It should be noted that Tanaka and Yoshimine also
calculated the rotational constants for ketene, which is isomeric with oxirene,
and that these rotational constants were found to be in good agreement with
those observed experimentally.

The information on the vibrational spectrum of oxirene is known from ab
initio calculations [49,50] only. Based on these data, the vibrational frequen-
cies of oxirene were estimated in the present work (Table 2). In addition to
oxirene, the vibrational frequencies of ketene and thiirene were calculated in
the above ab initio calculations. In the present work, the ab initio vibra-
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TABLE 2

Vibrational frequencies for the reference molecules

Molecule Frequencies (cm ™)

C,H,0 Oxirane A;: 3018, 1498, 1270, 1148, 877 4,: 3073, 1150, 1025 B,: 3006,
1472, 1151, 897 B,: 3065, 1142, 821

C,H,0 Oxirene A,;: 3150, 1750, 1000, 750 A4,: 650 B,: 550 B,: 3150, 950, 450

CH,0, Dioxirane A;: 3000, 1450, 1250, 750 A,: 950 B,: 3050, 1050 B,: 1200, 850

C;H O Oxetane Ay: 2979, 2894, 1505, 1452, 1343, 1033, 909, 785 4,: 2965, 1230,

1096, 842 B,: 2887, 1480, 1289, 1230, 1008, 937 B,: 3006, 2938,
1183, 1137, 703, -
C,H,0, 1,2-Dioxetane A,: 2903, 1517, 1203, 1072, 846, 840 A4,: 2996, 1289, 1148, 348
B;: 2902, 1493, 1327, 998, 760 B,: 2986, 1246, 983
C,HgO Tetrahydrofuran 2976, 2964, 2938, 2924, 2865, 2861, 2847, 1487, 1481, 1458,
1444, 1366, 1332, 1288, 1240, 1238, 1185, 1177, 1140, 1108,
1076, 1030, 980, 954, 912, 909, 870, 821, 654, 581, 286, —
C4,HsO 2,3-Dihydrofuran A: 3101, 3096, 2923, 2911, 2840, 2829, 1591, 1551, 1521, 1334,
1253, 1220, 1190, 1168, 1097, 1060, 1043, 1004, 973, 901, 845,
834, 820, 694, 603, 384, — °
2,5-Dihydrofuran A;: 3096, 2863, 1618, 1482, 1363, 935, 920, 801, 744 A4,: 2888,
1167, 1080, 1011, 398 B,: 3096, 2863, 1482, 1347, 1097, 982,
900, 744 B,: 2888, 1200, 1036, 662, — *
C,H,O Furan A,: 3167, 3140, 1491, 1384, 1140, 1066, 995, 871 A,: 863, 728,
613 B,: 3161, 3129, 1556, 1267, 1180, 1040, 873 B,: 838, 745,
603
C;H(O, 1,2-Dioxolane A: 2974, 2892, 2884, 1422, 1328, 1295, 1187, 1150, 1099, 931,
908, 780, 604, 333 B: 2982, 2971, 2890, 1406, 1306, 1208, 1188,
1070, 1053, 966, 809, 635, 254
1,3-Dioxolane 4;: 2889, 2857, 1509, 1480, 1361, 1087, 1030, 939, 658 4,: 2972,
1246, 1210, 1009, 260 B,: 2889, 1480, 1397, 1327, 1158, 961,
680 B,: 2998, 2964, 1286, 921, 723, - ®
C,H,0; 1,2,3-Trioxolane A4’: 2969, 2892, 1339, 1318, 1155, 1042, 941, 825, 750, 501, 171
A”: 2977, 2888, 1411, 1310, 1170, 1062, 1004, 795, 543, 97
1,2,4-Trioxolane A: 2973, 2894, 1482, 1387, 1196, 1129, 1078, 952, 808, 737, 352
B: 2967, 2900, 1483, 1346, 1202, 1143, 1029, 926, 698, 193

* The ring-puckering frequency is not given in the table, because the contribution derived for
the inversion motion (oxetane, 2,3- and 2,5-dihydrofuran) or for the restricted pseudo-rota-
tion (tetrahydrofuran and 1,3-dioxolane) has been obtained by direct summation over the
energy levels.

tional frequencies for ketene and thiirene were scaled by fitiing to the
observed spectra and the scale factors obtained for these molecules were
chosen for the corresponding vibrational modes of oxirene. The uncertain-
ties of the adopted fundamentals are estimated to be 50-150 cm™>.

There are no experimental data on the enthalpy of formation of oxirene,
but its value was calculated by semiempirical methods [44,45]. In Table 4,
we accepted the MINDO /3 value [44] which was corrected by comparison
of the experimental and MINDO/3 values of A;H*®(298.15 K) for
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cyclopropene. On the other hand, nearly the same value of A; H ©(298.15 K)
for oxirene is obtained when one assumes that in passing from cyclopropene
to oxirene, the change in A;H ©(298.15 K) values will be the same as in
passing from cyclopropane to oxirane.

The ideal gas thermodynamic properties for oxirene given in Table 4 are
reported for the first time. No experimental data are available for compari-
son.

DIOXIRANE

In order to determine its molecular structure, Lovas and Suenram [52,53]
have investigated the microwave spectra of several isotopic forms of di-
oxirane. A number of the ab initio calculations [54—61] agree well with those
experimental structural data. The product of the principal moments of
inertia of dioxirane (Table 1) was calculated using the rotational constants
of Suenram and Lovas [53].

The ab initio calculations [58,59] were performed to provide an estimate
of the as yet experimentally undetermined vibrational spectrum of dioxirane.
Based on the scaled ab initio frequencies obtained in these studies, the
vibrational frequencies of dioxirane were selected in Table 2; their uncer-
tainties are estimated to be 50-150 cm™".

No experimental data on the enthalpy of formation of dioxirane are
available. The value of A H*°(0) = 17 kJ mol ! was obtained from ab initio
calculation [62]. The enthalpy of formation of dioxirane was estimated in the
present work (Table 5) by comparison of known values of A; H®(298.15 K)
for related compounds [4]. We considered the change in A;H®(298.15 K)
values with the exchange of a ~CH,— unit for an —O- group in aliphatic
and cyclic compounds, and we believe that in passing from cyclopropane or
oxirane to dioxirane, the change in A H®(298.15 K) values might be
expected to be approximately the same as in passing from butane or
methoxyethane to dimethyl peroxide or as in passing from hexane or
1-ethoxypropane to diethyl peroxide (the A;H® values for the above
compounds may be found in ref. 4).

The ideal gas thermodynamic properties for dioxirane are presented in
Table 5. These values are reported for the first time and there are no
experimental data for comparison.

OXETANE

The molecular structure and evidence for the ring-puckering vibration of
oxetane have been obtained from microwave studies of its rotational spectra
[63-66], from far-infrared measurements of the corresponding low-frequency
absorptions [67-71], from combination bands appearing in the mid-infrared
regions [72-74], from Raman spectra [75,76] and from theoretical calcula-
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tions [10,77-84). According to these data, there is a double minimum
potential function for the ring-puckering vibration; the barrier found experi-
mentally is extremely low — below the puckering zero-point energy — so
that the geometry can be regarded as essentially planar. The product of the
principal moments of inertia for the planar configuration (C,, symmetry)
given in Table 1 was calculated using the rotational constants determined
from microwave study [66].

Some assignments of the vibrational spectra of oxetane are known
[74,76,85-89]. The fundamental frequencies listed in Table 2 were taken
from the reliable interpretation of the vibrational spectra by Kydd et al. [89].
These authors investigated the IR vapour phase and solid phase spectra, and
the Raman spectra of the vapours and liquids of oxetane and its deuterated
derivatives. Most of the assignments of Kydd et al. [89] were confirmed by
ab initio calculation [83].

The thermodynamic-property contributions due to inversion of the oxetane
ring were obtained by direct summation over the energy levels calculated
with the potential function. Several investigations of the double minimum
ring-puckering potential functions of oxetane have been reported [63,64,68,
70,71). The potential function given by Kydd et al. [70] was used to calculate
60 energy levels (0-13800 cm™!). The potential functlon for inversion is
V(x) =(7.16 X 10°x* — 6.58 X 10*x?) cm™* (where x (A) is the ring-pucker-
ing coordinate) with a barrier height of 15.1 cm ™' and a reduced mass of
95.7 a.u. The partition function for inversion is based on these 60 levels with
the first 11 levels being the experimental levels from which the potential
function was derived.

The enthalpy of formation for oxetane (Table 6) was taken from the data
of Pedley et al. [4].

The ideal gas thermodynamic properties for oxetane are given in Table 6.
The calculated values of C°(T) coincide with the calorimetric heat capaci-
ties [90] within 0.3 J K™* mol 1 (Table 18). This discrepancy is within the
uncertainties of the experimental values. Due to the discrepancy in the
molecular constants used, the discrepancies with the C°(7T) and § e(T)
values calculated by Ziircher and Giinthard [85,86] amount to 2-10 J K™!
mol~! (Tables 17, 18). Curl et al. [91] have developed a technique for
determination of the gas-state free energy functions from the absolute
intensity measurements in microwave spectroscopy. The value of —(G*® —
HP)/T at 298.15 K obtained by Curl et al. differs by only 0.2 J K~! mol ™"
from our calculation.

1,2-DIOXETANE
The structural parameters of 1,2-dioxetane have been obtained by ab

initio calculations [92-95] only. In the present work, the product of the
principal moments of inertia (Table 1) was calculated on the basis of the
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estimated geometric parameters for a planar structure: r(C-0) = 1.45 £ 0.03
A; r(C-H)=1.09 £ 0.01 A; r(C-C)=1.55 + 0.02 A; r(O-0) =1.47 + 0.03
A; Z(H-C-0) =112 + 5°; and £(H-C-C) = 115 + 5°. The C-0, C—C and
C-H bond lengths were assumed to be the same as in oxetane, and the O-O
bond length was taken to be the same as in 1,2,4-trioxolane. The bond
angles were selected by comparing the results of ab initio calculations for
1,2-dioxetane [93] with experimental data for related compounds.

The vibrational spectrum of 1,2-dioxetane was not investigated, either
experimentally or theoretically. In this work the vibrational frequencies of
1,2-dioxetane (Table 2) were calculated using 19 force constants transferred
from oxetane and 1,2,4-trioxolane. Normal coordinate calculations were
performed for oxetane and 1,2,4-trioxolane using vibrational frequencies
from Table 2 and the NCA program written by Novikov and Malyshev [96].
Simple valence force fields for oxetane and 1,2,4-trioxolane (with 18 and 16
parameters, respectively) obtained after refinements, reproduce the experi-
mental vibrational spectra of these molecules with an average error of 18
cm™'. We believe that an average uncertainty of the vibrational frequencies
of 1,2-dioxetane calculated by combining the force constants of oxetane and
1,2,4-trioxolane is about 50 cm™!; however, for the ring-puckering vibration
the uncertainty may be much more significant.

The experimental value of A H ©(298.15 K) for 1,2-dioxetane has not yet
been determined. The enthalpies of formation estimated from semiempirical
calculations [97,98] (—98 and —18 kJ mol ™, respectively) and from the
group additivity scheme [99] (0 kJ mol '), differ significantly from each
other. In this work, the value of A;H ©(298.15 K) (Table 7) was estimated
by comparison of known values of A;H* for related compounds, as
described above for dioxirane. Recently, Richardson [100] used molecular
mechanics to calculate the A;H*°(298.15 K) value of 1,2-dioxetane. His
estimate (4.4 kJ mol 1) is close to the value assumed in this work.

The ideal gas thermodynamic properties for 1,2-dioxetane are given in
Table 7. No experimental or theoretical data are available for comparison.

TETRAHYDROFURAN

Lafferty et al. [101] interpreted the far-infrared spectrum of tetrahydro-
furan in terms of a free pseudo-rotation. Later, Greenhouse and Strauss
[102] re-examined the spectrum and proposed the existence of hindered
pseudo-rotation in the molecule. Evidence for essentially free pseudo-rota-
tion has been found from electron diffraction data [103,104], but a definite
distinction between free pseudo-rotation and the presence of one or more
static puckered conformations could not be made from the electron diffrac-
tion intensities. The conformational energy calculations [105] indicate that
the half-chair (C, symmetry) and the envelope (C, symmetry) conforma-
tions, and also the intermediate conformations, have nearly the same energy.
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Engerholm et al. [106] studied the microwave spectrum of tetrahydrofuran
and interpreted it in terms of a model of restricted pseudo-rotation. Based
on the variation of the dipole moment, they suggested that the twisted (C,
symmetry) configuration had a lower energy than the bent (C, symmetry)
configuration. The hindered pseudo-rotation with the most stable, puckered
C,-symmetrical twist form has been found for tetrahydrofuran by Cremer
[107] from ab initio calculations. In the present work, it is assumed that
tetrahydrofuran has a non-planar twist ground-state conformation (C, sym-
metry) and that the molecule undergoes hindered pseudo-rotation through
its planar configuration (C,, symmetry). The product of the principal
moments of inertia given in Table 1 was calculated using the reported three
ground-state rotational constants [106].

The IR and Raman spectra of tetrahydrofuran have been observed by
several researchers [108-110] (for the earliest work, see citations in ref. 35)
and their vibrational assignments have been made on the basis of a normal
coordinate analysis assuming the molecule possesses C,, [111] or C, [109,110]
symmetry. The vibrational frequencies listed in Table 2 are those obtained
by Eyster and Prohofsky [111] and Derouault et al. [110] from IR and
Raman spectral measurements and normal coordinate analysis.

The thermodynamic-property contributions due to restricted pseudo-rota-
tion of the tetrahydrofuran ring were obtained by direct summation over the
energy levels calculated from the potential function V() = 0.5[ —30(1 — cos
2¢) — 40(1 — cos 4v¢)] cm™!, where ¢ is the angle of pseudo-rotation, as
reported by Engerholm et al. [106]. This potential function and a pseudo-ro-
tation constant F=3.27 cm~! [101] were employed to generate 132
pseudo-rotation energy levels (0-14270 cm™') for the calculation of the
pseudo-rotational contributions.

The enthalpy of formation for tetrahydrofuran (Table 8) was taken from
data of Pedley et al. [4].

The ideal gas thermodynamic properties for tetrahydrofuran are given in
Table 8. The calculated value of S(298.15 K) is in good agreement with
values calculated by Scott [109] and by Chao et al. [35] (Table 17). The
S (298.15 K) value reported in the TRC Tables [42], as well as the value of
S$°(298.15 K) calculated by Rehman and Lee [112] from an approximate
equation based on the formulae of statistical mechanics, is about 5 J K~!
mol ! less than the values obtained from more precise statistical calcula-
tions with evaluation of the pseudo-rotational contributions to the thermo-
dynamic properties [35,109,this work]. However, all the calculated values are
substantially higher than the calorimetric value obtained by Lebedev et al.
[113] (Table 17). Although Lebedev et al. do not see any shortcomings in
their calorimetric determination of entropy which could cause the dis-
crepancy in the statistical and calorimetric values of $(298.15 K) by 12J
K~ ! mol™}, the calorimetric value seems to be incorrect as the statistical
values of C,°(T) (Table 18) are in good agreement with experimental ones
[901.
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2,3-DIHYDROFURAN

The ring-puckering vibration in 2,3-dihydrofuran has been studied in the
infrared (as difference bands between the CH stretching and ring-puckering
vibrations) [72], in the far-infrared [114], in the Raman [115] and in the
microwave region [116,117]. All of these studies indicate that the ring has a
non-planar equilibrium conformation. The ring-puckering vibration is de-
scribed by a double minimum potential function with a low barrier (around
83 cm™'). The product of the principal moments of inertia for the non-planar
conformation (C; symmetry) of 2,3-dihydrofuran given in Table 1 was
calculated using the rotational constants determined from microwave study
[117].

The vibrational spectrum of 2,3-dihydrofuran was not investigated, either
experimentally or theoretically. In this work, the vibrational frequencies of
2,3-dihydrofuran (Table 2) were calculated using 24 force constants trans-
ferred from tetrahydrofuran, furan and 2,5-dihydrofuran. Normal coordi-
nate calculations were carried out for the above three molecules using their
fundamental frequencies from Table 2. Simple valence force fields for
tetrahydrofuran, furan and 2,5-dihydrofuran (with 18, 19 and 19 parameters,
respectively) obtained after refinements, reproduce the experimental vibra-
tional spectra of these molecule with an average error of 9, 10 and 21 cm™?,
respectively. We believe that the average uncertainty of the vibrational
frequencies obtained in this work is about 50 cm™?.

The thermodynamic-property contributions due to inversion of the 2,3-di-
hydrofuran ring were obtained by direct summation over the energy levels
calculated with the potential function. Several investigations of the double
minimum ring-puckering potential function of 2,3-dihydrofuran have been
reported [72,114-117]. The potential function given by Green [114] was used
to calculate 60 energy levels (0-13400 cm™!). The potential function for
inversion is V(x) = (1.002 X 10%x* — 1.834 X 10*x?) cm™! (where x (A) is
the ring-puckering coordinate) with a barrier height of 83 cm™! and a
reduced mass of 112 a.u. The partition function for inversion is based on
these 60 levels with the first 13 levels being the experimental levels from
which the potential function was derived.

Experimental or calculated data on the enthalpy of formation are not
available for 2,3- or 2,5-dihydrofuran. The experimental values of
A H*®(298.15 K) are known for related sulphur-containing five-membered
rings [4]: tetrahydrothiophene ( — 34.1 kJ mol !); 2,3-dihydrothiophene (90.7
kJ mol™1); 2,5-dihydrothiophene (86.9 kJ mol~!); and thiophene (114.9 kJ
mol™1). As the difference between the enthalpies of formation for tetrahy-
drothiophene and thiophene (~149.0 kJ mol™") is practically the same as
for tetrahydrofuran and furan (—149.3 kJ mol™'), one can estimate the
A;H*®(298.15 K) values for 2,3- and 2,5-dihydrofuran to be about —59 and
—63 kJ mol™!, respectively, assuming that the difference between the
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A H*®(298.15 K) values for 2,3- or 2,5-dihydrofuran and tetrahydrofuran
will be the same as for 2,3- or 2,5-dihydrothiophene and tetrahydro-
thiophene. On the other hand, the value of A;H*®(298.15 K)= —86 kJ
mol ! is obtained for 2,3-dihydrofuran when one assumes that in passing
from cyclopentene to 2,3-dihydrofuran, the change in A,H ©(298.15 K) will
be the same as in passing from cyclohexene to 3,4-dihydro-2H-pyran. The
average of these two estimates, — 75 kJ mol ~?, was accepted for the enthalpy
of formation of 2,3-dihydrofuran (Table 9). The value of A,H ©(298.15
K) = —70 kJ mol~! was assumed for 2,5-dihydrofuran.

The ideal gas thermodynamic properties for 2,3-dihydrofuran presented in
Table 9 are reported for the first time. No experimental data are available
for comparison.

2,5-DIHYDROFURAN

The ring-puckering motion of 2,5-dihydrofuran has been studied in detail
by far-infrared [118-122], Raman [123,124] and microwave [125] spec-
troscopy and by gas-phase electron diffraction [126]. All of these studies
have confirmed that 2,5-dihydrofuran has a planar equilibrium configura-
tion (C, symmetry) and a single minimum ring-puckering potential function.
The product of the principal moments of inertia for the planar conformation
of 2,5-dihydrofuran given in Table 1 was calculated using the rotational
constants determined from microwave study [125].

Fortunato [127] has reported the vibrational assignment for 2,5-dihydro-
furan from the IR measurements in gaseous, liquid and solid states, and
from the Raman study in the liquid state. This assignment has been
confirmed by normal coordinate analysis [126]. The observed vibrational
frequencies with minor modifications based on the normal coordinate calcu-
lation [126] are listed in Table 2.

The thermodynamic-property contributions due to ring-puckering of the
2,5-dihydrofuran were obtained by direct summation over the energy levels
calculated with the potential function. Several investigations of the ring-
puckering potential function of 2,5-dihydrofuran have been reported [118-
122,125,126]. The potential function given by Carreira and Lord [119] was
used to calculate 60 energy levels (0~13200 cm™!). The potential function
for ring-puckering vibration is ¥(x) = (0.12699 X 107x* + 0.16374 X 10°x2)
cm™! (where x (;\) is the ring-puckering coordinate) with a reduced mass of
155.7 a.u. The partition function for ring-puckering motion is based on these
60 levels with the first 13 levels being the experimental levels from which the
potential function was derived.

There are no experimental or theoretical data on the enthalpy of forma-
tion of 2,5-dihydrofuran and the A H ©(298.15 K) value given in Table 10
was estimated in this work (see 2,3-dihydrofuran).
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The ideal gas thermodynamic properties for 2,5-dihydrofuran are given in
Table 10. No experimental data are available for comparison. The calculated
values of S°(T') and C,°>(T) are in good agreement with those calculated
by other authors [35,42,112] (Tables 17, 18).

FURAN

Information on the structural parameters and rotational constants of
furan has been obtained from microwave studies [128,129], high-resolution
rotational spectra [130], electron diffraction data [131] and theoretical calcu-
lations [132-134]. The rotational constants determined in experimental
works [128-130] are in virtual agreement and were used to calculate the
product of the three principal moments of inertia (Table 1).

The vibrational spectra of furan have been investigated by many authors
[29,135-144] and complete fundamental vibrational assignments have been
reported. The fundamental frequencies used in our calculations (Table 2)
were taken from the reliable work of Rico et al. [137]. These authors
observed the vibrational frequencies for furan and some deuterated deriva-
tives from their IR and Raman spectra for vapour and liquid states; their
vibrational assignment has been confirmed by vibrational analysis [141].

The enthalpy of formation for furan (Table 11) was taken from the data
of Pedley et al. [4].

The ideal gas thermodynamic properties for furan are given Table 11. The
calculated value of S°(298.15 K) agrees well with the calorimetric value
[145] (Table 17). The calculated entropy values are in good agreement with
those obtained in other statistical calculations [35,40,42,112,145,146]. The
heat capacity values also agree well with those obtained experimentally [145]
and calculated theoretically [35,42,112,137,145,146] (Table 18).

1,2-DIOXOLANE

Scant information is available on the structure of 1,2-dioxoiane. Kondo et
al. [147] have determined the rotational constants of 1,2-dioxolane by
microwave spectroscopy. The observed rotational constants were fairly well
reproduced by the plausible set of bond lengths and bond angles borrowed
from analogous molecules. The bond angles in the skeletal framework and
the dihedral angle were allowed to adjust themselves. The dihedral angle
around the peroxide bond obtained from the treatment (50 +2°) corre-
sponds to the non-planar twist form. A close value for the dihedral angle
was obtained from a photoelectron spectroscopic study [148]. A theoretical
determination of the molecular structure and the conformation of 1,2-di-
oxolane has been carried out by Cremer [107] from ab initio investigation. It
was established that the molecule undergoes hindered pseudo-rotation. A
puckered C,-symmetrical twist form was found to be the most stable
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conformation for 1,2-dioxolane. On the energy profile during pseudo-rota-
tion, the planar (C,, symmetry) and envelope (C, symmetry) forms are
located at the maxima. The calculated structural parameters are close to
those estimated by Kondo et al. [147]. As the barrier to pseudo-rotation
calculated by Cremer [107] is fairly high (= 9 kJ mol '), the pseudo-rotation
was not taken into account in the present work. The twist conformation of
C, symmetry was accepted for 1,2-dioxolane and the product of the prin-
cipal moments of inertia given in Table 1 was calculated using the rotational
constants of Kondo et al. [147]. Recently, Carballeira et al. [149] have
carried out a molecular mechanics investigation of 1,2-dioxolane. The opti-
misation led to a single minimum corresponding to the twist conformer; this
unique conformer is the same as was obtained using ab initio methods by
Cremer [107] and whose existence was deduced experimentally by Kondo et
al. [147] on the basis of microwave data.

Experimental or theoretical data on the vibrational spectrum of 1,2-di-
oxolane are unknown. In this work, the vibrational frequencies of 1,2-di-
oxolane (Table 2) have been calculated using 20 force constants transferred
from tetrahydrofuran and 1,2,4-trioxolane. Normal coordinate calculations
were carried out for tetrahydrofuran and 1,2,4-trioxolane using vibrational
assignments from Table 2. Simple valence force fields for tetrahydrofuran
and 1,2,4-trioxolane with 18 and 16 parameters, respectively, obtained after
refinement, reproduce the experimental vibrational spectra of these mole-
cules with an average error of 9 and 17 cm™!, respectively. An average
uncertainty of the vibrational frequencies of 1,2-dioxolane calculated by
combining the force constants of tetrahydrofuran and 1,2,4-trioxolane, is
believed to be about 50 cm™?, however, for the ring-puckering frequency the
uncertainty may be much more significant.

There are no experimental or theoretical determinations of the enthalpy
of formation of 1,2-dioxolane. In this work, the value of A H ©(298.15 K)
(Table 12) was estimated by comparison of known values of A;H ©(298.15
K) for related compounds, as described above for dioxirane.

The ideal gas thermodynamic properties for 1,2-dioxolane are given in
Table 12. No experimental or theoretical data are available for comparison.

1,3-DIOXOLANE

Durig and Wertz [150] interpreted the far-infrared spectrum of 1,3-di-
oxolane in terms of free pseudo-rotation. Greenhouse and Strauss [102]
concluded from their far-infrared study that 1,3-dioxolane has a barrier to
pseudo-rotation of about 50 cm™!. Baron and Harris [151] interpreted the
microwave spectrum of 1,3-dioxolane in terms of restricted pseudo-rotation
and concluded that the minimum in the potential energy occurs at a
configuration which is approximately half bent and half twisted, and that
both the bent (C, symmetry) and twist (C, symmetry) forms are maxima on
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the potential energy surface, with the twist form being slightly higher in
energy. No attempt was made to determine the structure using rotational
constants. Nuclear magnetic resonance results on 1,3-dioxolane [152] were
not consistent with a planar ring structure and could only be explained in
terms of appreciable ring deformations.

Shen et al. [153)] have determined the gas-phase structure of 1,3-dioxolane
from electron diffraction investigation. Various rigid, single conformer mod-
els, conformational mixtures of envelope (C, symmetry) and twist (C,
symmetry) forms of the molecule and pseudo-rotational models were tested.
The best results were obtained with a pseudo-rotational model. The authors
inferred from their data that there is a very small barrier to pseudo-rotation
and that the C, form of the molecule corresponds to an energy minimum.
This result agrees with ab initio calculations [107,154,155], but is in disagree-
ment with the results of molecular mechanics calculations [153,156-159] and
the microwave spectroscopic data [151]). The molecular mechanics calcula-
tions predict the C, form of 1,3-dioxolane to be the more stable, but this
result hinges critically upon the data chosen for parameterisation [155,158].

In the present work, it is assumed that 1,3-dioxolane has a twist confor-
mation (C, symmetry) and that the molecule undergoes hindered pseudo-ro-
tation through its planar (C,, symmetry) form. The product of the principal
moments of inertia given in Table 1 was calculated using the reported three
ground-state rotational constants [151].

The IR and Raman spectra for different phases of 1,3-dioxolane were
reported by Barker et al. [160]. The authors assigned 25 of the 27 normal
modes of 1,3-dioxolane on the basis that the molecule possesses C,, symme-
try. These frequencies are presented in Table 2. The only modes which
Barker et al. did not assign were the two out-of-plane skeletal bending
vibrations »,,(4,) and »,,(B,). For the high-frequency puckering mode »,,,
the value of 260 cm™! obtained by Durig and Wertz [150] from the
far-infrared spectrum is assumed in Table 2. The low-frequency puckering
mode »,, is not given in Table 2, as the contribution due to pseudo-rotation
of 1,3-dioxolane was obtained from energy levels calculaied with the poten-
tial function.

The contributions of hindered pseudo-rotation to the thermodynamic
properties were obtained by direct summation over the energy levels calcu-
lated with the potential function V() = 0.5[ —10.2(1 — cos 2¢) — 40(1 — cos
4y)] cm™?, where ¢ is the angle of pseudo-rotation, as reported by Baron
and Harris [151]. This potential function and a pseudo-rotation constant
F=3.99 cm™! [151] were employed for generating 132 pseudo-rotation
energy levels (0-17400 cm™!) for calculation of the pseudo-rotational
contributions.

The enthalpy of formation of 1,3-dioxolane (Table 13) was taken from the
data of Pedley et al. [4].

The ideal gas thermodynamic properties for 1,3-dioxolane are given in
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Table 13. No other statistical calculations are available for comparison. Our
value of $°(298.15 K) is 10.8 J K~! mol~! less than the value obtained
from the calorimetric investigation [161] (Table 17). Such a large discrepancy
between the calculated and experimental values of the entropy is unlikely to
be due to the uncertainty of the molecular constants assumed for statistical
calculation. From the viewpoint of group additivity principles, one can
reasonably suggest that the changes in S;5(298.15 K) ! values with the
exchange of a ~-CH,— unit for an —O- group will be rather close to one
another for five-, six- and seven-membered rings. We have in fact found that
this suggestion is true, within the uncertainties of statistical calculations, for
the following compounds (all values of entropy were calculated by us; for
six- and seven-membered rings see Part 2 of this series):

As =82 (C,H;0, tetrahydrofuran) — S;5(C;H¢O,, 1,3-dioxolane)

=25JK ' mol™}

A¢ =85 (CsH,,0, tetrahydro-2H-pyran) — S5 (C,H;0,, 1,3-dioxane)
=53JK ' mol™};

A, = S35 (CsH,,0, oxepane) — S, (CsH,,0,, 1,3-dioxepane)
=34JK ! mol L '

However, if we adopt the calorimetric value of entropy for 1,3-dioxolane, the
A, value will be equal to —8.3 J K™ ! mol~! and group additivity will not be
correct in this case. Thus, assuming group additivity to be correct, one can
give preference to the calculated value of entropy.

1,2,3-TRIOXOLANE

The lowest energy oxygen envelope conformation (C; symmetry) has been
determined for gaseous 1,2,3-trioxolane from microwave spectra of five
isotopic species [162,163). This form corresponds to a conformation in which
the unique oxygen is bent out of the plane defined by the remaining four
ring atoms. Contrary to previous semiempirical and ab initio calculations
[164-169] which are rather inconclusive with regard to the most probable
1,2,3-trioxolane conformation, the ab initio calculations performed by
Cremer [107,170] and by McKee and Rohlfing [171] clearly predict the
symmetrical oxygen envelope conformation to be lowest in energy which is
consistent with the microwave data. The barrier to pseudo-rotation is
estimated by ab initio methods [107,170] to be a fairly high (=15 J K™!
mol~!). The product of the principal moments of inertia given in Table 1
was calculated using the rotational constants of Gillies et al. [162].

! The intrinsic entropy S;, is related to the observed entropy S© by the relation S;5, = S© + R
In(e/n), where o is the symmetry number for the molecule and n is the number of optical
isomers.
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Kohlmiller and Andrews [172] have investigated the reaction between
ozone and ethylene in solid xenon by IR spectroscopy, and seven absorp-
tions have been assigned to 1,2,3-trioxolane. From microwave investigation,
Gillies et al. [162,163] have assigned two lowest vibrational frequencies
which correspond to the ring-puckering vibrations of 1,2,3-trioxolane. The
vibrational frequencies listed in Table 2 have been calculated in the present
work by transferring force constants from tetrahydrofuran and 1,2,4-tri-
oxolane, except for two ring-puckering frequencies whose values have been
taken from microwave data [162]. Normal coordinate calculations were
performed for tetrahydrofuran and 1,2,4-trioxolane using vibrational fre-
quencies from Table 2. Simple valence force fields for tetrahydrofuran and
1,2,4-trioxolane with 18 and 16 parameters, respectively, reproduce the
experimental vibrational spectra of these molecules with an average error of
13 cm™ . One can believe that an average uncertainty for the vibrational
fundamentals of 1,2,3-trioxolane calculated combining the force constants of
these two molecules is about 50 cm ™.

There are no experimental data on the enthalpy of formation of 1,2,3-tri-
oxolane. The value of A;H ©(298.15 K) estimated from semiempirical [166]
(—118 kJ mol™ ') and ab initio [62] (0 kJ mol~?!) calculations differ signifi-
cantly from each other. An estimate for A,H *®(298.15 K) for 1,2,3-tri-
oxolane was obtained in the present work (Table 14) by comparison of the
adopted values of the enthalpy of formation of cyclopentane, tetrahydro-
furan and 1,2-dioxolane with the A; H ©(298.15 K) values for related aliphatic
compounds, as described above for dioxirane.

The ideal \gas thermodynamic properties for 1,2,3-trioxolane presented in
Table 14 are reported for the first time. No experimental data are available
for comparison.

1,2,4-TRIOXOLANE

The half-chair (twist) conformation with C, symmetry has been de-
termined from the microwave spectra of the isotopic species of 1,2,4-tri-
oxolane [173,174]; there was no evidence for free or hindered pseudo-rota-
tion. The twist form was found to be the most stable conformation from ab
initio calculations [107,170,175]. Semiempirical methods have yielded differ-
ent results for the geometry and for the relative stability of the conformers
of 1,2,4-trioxolane [165]. An almost equally good agreement between the
theoretical and experimental intensities has been obtained from electron
diffraction data by assuming both C, and C, symmetry [176], but calcula-
tions of conformational energies favoured the C, model [105]. The product
of the principal moments of inertia given in Table 1 was calculated using the
rotational constants determined from an analysis of the microwave spectra
[173,174).
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Kiihne and Giinthard [177] have observed the infrared and far-infrared
spectra of three isotopic modifications of 1,24-trioxolane isolated in solid
argon and have made a complete vibrational assignment based on empirical
considerations and normal coordinate analysis. Several absorptions have
also been assigned to 1,2,4-trioxolane from other matrix IR spectra studies
[178]. The vibrational frequencies, given in Table 2, are those obtained by
Kiihne and Giinthard [177].

There are no experimental data on the enthalpy of formation of 1,2,4-tri-
oxolane. The values of A;H estimated from semiempirical [166] (—272 kJ
mol ') and ab initio [62] (—50 kJ mol™") calculations differ significantly
from each other. In the present work, the value of A H ®(298.15 K) for
1,2,4-trioxolane (Table 15) was estimated by comparison of the enthalpies of
formation for related five-membered rings (cyclopentane, tetrahydrofuran,
and 1,2- and 1,3-dioxolane) and aliphatic compounds, as described above
for dioxirane.

The ideal gas thermodynamic properties for 1,2,4-trioxolane are presented
in Table 15. No experimental data are available for comparison. The
statistical thermodynamic functions of 1,2,4-trioxolane have been reported
by Kithne and Giinthard [177]. Although we used practically the same
molecular constant values as Kithne and Giinthard, only the values of C,°
are in good agreement for the two statistical calculations (Table 18), while
our S° values are about 6 J K™ mol~! more than those of Kiihne and
Giinthard (Table 17). We believe that the values of S calculated by Kiihne

TABLE 16

The uncertainties in the calculated thermodynamic functions (J K~! mol™') and adopted
enthalpies of formation (kJ mol 1)

Molecule Uncertanties in Uncertainties in ~ Uncertainties in
—(G® -HZ)/T Cpe A;H®(298.15K)
29815 1000K 29815 1000K
C,H,0 Oxirane 0.5 1.5 1.5 4.5 0.6
C,H,0  Oxirene 20 4.0 3.0 4.5 20.0
CH,0, Dioxirane 2.0 4.0 3.0 4.5 30.0
C;H,O  Oxetane 1.5 2.5 2.0 4.5 0.6
C,H,0, 1,2-Dioxetane 30 5.0 4.0 6.0 300
C4,HgO  Tetrahydrofuran 1.5 3.0 3.0 5.0 0.8
CsH,O  2,3-Dihydrofuran 3.0 50 40 6.0 20.0
2,5-Dihydrofuran 2.0 35 3.0 5.0 20.0
C,H,0 Furan 0.5 2.5 20 6.5 0.7
C3;H 0, 1,2-Dioxolane 3.0 5.0 40 8.5 50.0
1,3-Dioxolane 3.0 5.0 4.0 8.5 1.4
C,H,0; 1,2,3-Trioxolane 35 5.5 3.5 7.0 75.0

1,2,4-Trioxolane 3.0 5.0 3.5 6.5 50.0




TABLE 17

Comparison of experimental * entropies with calculated values (J K™ mol™?)

Se(T) Reference
29815 K 500 K 1000 K 1500 K
C,H,0 Oxirane
242.5 [34]
243.1 [35]
243.8 [36]
2433 274.7 3410 [37]
2431 274.4 340.7 [38]
2429 2743 340.7 3904 [39]
2744 340.7 [40]
245.5 277.6 3448 [41]
243.0 274.4 340.8 391.3 [35,42]
2426 273.7 3398 390.3 This work
C;H, Oxetane
265.4 306.3 399.8 [85]
274.0 3142 406.5 (86] ®
265.0 305.0 397.3 [86] ©
2714 3136 407.9 481.2 This work
C,HO Tetrahydrofuran
288 + 1 [113]
3024 355.7 478.3 [109]
297.2 350.7 473.3 569.8 [112]
302.4 355.7 478.1 574.2 [35]
297.3 350.8 473.6 570.0 [42]
3024 356.0 478.9 575.3 This work
C,HO 2,5-Dihydrofuran
284.7 335.8 445.1 5279 [112]
284.2 335.2 443.5 525.0 [35)
284.8 3359 445.3 528.2 [42)
284.3 335.6 445.5 528.6 This work
C,H,O Furan
267.3+ 04 [145]
267.3 311.7 404.9 473.7 [145]
267.2 311.8 405.1 [146]
311.9 405.2 4744 [40]
267.1 3115 404.8 473.6 [112]
267.2 3117 405.1 473.9 [35,42)
267.2 311.8 405.1 4739 This work
C;3H(0, 1,3-Dioxolane
310.6 + 4.1 [161]
299.8 348.0 454.0 535.7 This work
C,H,0,;1,2,4-Trioxolane
279.0 3241 417.5 486.8 177
285.2 3304 4239 493.2 This work

® Experimental values of S (298.15 K) are italic.

b ¥,y =60 cm™ L.
¢ vy =184 cm™’,
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and Giinthard are incorrect because they have not taken into account the
existence of optical isomers for the C, conformation.

ACKNOWLEDGEMENTS

The author thanks Dr. Valdimir Iorish and Oksana Ryzhova for help in
performing the computer calculation for molecules having inversion motion
or pseudo-rotation.

REFERENCES

O.V. Dorofeeva, L.V. Gurvich and V.S. Jorish, J. Phys. Chem. Ref. Data, 15 (1986) 437.
N.F. Moiseeva, O.V. Dorofeeva and V.S. Jorish, Thermochim. Acta, 153 (1989) 77.
N.F. Moiseeva and O.V. Dorofeeva, Thermochim. Acta, 168 (1990) 179.
J.B. Pedley, R.D. Naylor and S.P. Kirby, Thermochemical Data of Organic Compounds,
2nd edn., Chapman and Hall, London, 1986.
L.V. Gurvich, I.V. Veyts and C.B. Alcock (Eds.), Thermodynamic Properties of Individ-
ual Substances, 4th edn., Vol. 2, Hemisphere, New York, 1990.
M. Igarashi, Bull. Chem. Soc. Jpn., 26 (1953) 330.
G.L. Cunningham, A.W. Boyd, R.J. Myers, W.D. Gwinn and W.I. LeVan, J. Chem.
Phys., 19 (1951) 676.

8 T.E. Turner and J.A. Howe, J. Chem. Phys., 24 (1956) 924L.

9 C. Hirose, Bull. Chem. Soc. Jpn., 47 (1974) 1311.
10 P.N. Skancke, G. Fogarasi and J.E. Boggs, J. Mol. Struct., 62 (1980) 259.
11 A. Komomicki, F. Pauzat and Y. Ellinger, J. Phys. Chem., 87 (1983) 3847.
12 J.A. Boatz and M.S. Gordon, J. Phys. Chem., 93 (1989) 3025.
13 R.C. Lord and B. Nolin, J. Chem. Phys., 24 (1956) 656.
14 W.J. Potts, Spectrochim. Acta, 21 (1965) 211.
15 T. Hirokawa, M. Hayashi and H. Murata, J. Sci. Hiroshima Univ., Ser. A, 37 (1973) 283.
16 J.E. Bertie and D.A. Othen, Can. J.-Chem., 51 (1973) 1155.
17 N.W. Cant and W.J. Armstead, Spectrochim. Acta, Part A, 31 (1975) 839.
18 N. Yoshimizu, C. Hirose and S. Maeda, Bull. Chem. Soc. Jpn., 48 (1975) 3529.
19 J.E. Bertie and S.M. Jacobs, J. Chem. Phys., 68 (1978) 97.
20 T. Nakanada, J. Chem. Phys., 73 (1980) 5451.
21 T. Nakanada, J. Chem. Phys., 74 (1981) 5384.
22 R. Cataliotti and G. Paliani, Chem. Phys., 72 (1982) 293.
23 M. Spiekermann, D. Bougeard and B. Schrader, J. Comput. Chem., 3 (1982) 354.
24 R.A. Nyquist and C.L. Putzig, Appl. Spectrosc., 40 (1986) 112.
25 J.H. Wray, Proc. Phys. Soc., At. Mol. Phys., Ser. 2, 1 (1968) 485.
26 JM. Freeman and T. Henshall, Can. J. Chem., 46 (1968) 2135.
27 K. Venkateswarlu and P.A. Joseph, J. Mol. Struct., 6 (1970) 145.
28 T. Hirokawa, J. Sci. Hiroshima Univ., Ser. A, 39 (1975) 161.
29 M.J.S. Dewar and G.P. Ford, J. Am. Chem. Soc., 99 (1977) 1685.
30 B.A. Hess, Jr., L.J. Schaad and P.L. Polavarapu, J. Am. Chem. Soc., 106 (1984) 4348.
31 M.A. Lowe, J.S. Alper, R. Kawiecki and P.J. Stephens, J. Phys. Chem., 90 (1986) 41.
32 E.D. Simandiras, R.D. Amos, N.C. Handy, T.J. Lee, J.E. Rice, R.B. Remington and H.F.

Schaefer III, J. Am. Chem. Soc., 110 (1988) 1388.

33 P.K. Bose, T.M. Black and P.L. Polavarapu, Chem. Phys., 139 (1989) 409.
34 W.F. Giauque and J. Gordon, J. Am. Chem. Soc., 71 (1949) 2176.
35 J. Chao, K.R. Hall, K.N. Marsch and R.C. Wilholt, J. Phys. Chem. Ref. Data, 15 (1986)
1369.

wn WD =

~



36
37
38

39
40

41
42

43
44
45
46

47
48
49

50
51

52
53
54
55
56

57
58
59
60
61

62
63
64
65
66
67
68

69
70
7
72
73
74
75
76
77

43

H. Giinthard and E. Heilbronner, Helv. Chim. Acta, 31 (1948) 2128.

I. Godnev and V. Morozov, Zh. Fiz. Khim., 22 (1948) 801.

K. Venkateswarlu, S. Mariam and M.P. Mathew, Proc. Indian Acad. Sci., Part A, 62
(1965) 159.

A.A. Vvedensky, Zh. Fiz. Khim., 40 (1966) 1953.

A.A. Shershavina, I.A. Krylova and L.A. Boeshko, in Voprosy Kinetiki Protsessov
Teplo- i Massoobmena, Minsk, 1975, p. 180.

R. Ramasamy and K.G. Srinivasacharya, Curr. Sci., 47 (1978) 668.

Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center
Data Project, Thermodynamics Research Center, Texas A&M University, College Sta-
tion, Texas 77843 (Loose-leaf data sheets, extent 1989).

G.B. Kistiakowsky and W.W. Rice, J. Chem. Phys., 8 (1940) 618.

M.J.S. Dewar and C.A. Ramsden, J. Chem. Soc., Chem. Commun., (1973) 688.

H. Bogel, Anal. Chim. Acta, 206 (1988) 233.

O.P. Strausz, R.K. Gosavi, A.S. Denes and 1.G. Czizmadia, J. Am. Chem. Soc., 98 (1976)
4784.

C.E. Dykstra, J. Chem. Phys., 68 (1978) 4244,

K. Tanaka and M. Yoshimine, J. Am. Chem. Soc., 102 (1980) 7655.

W.J. Bouma, R.H. Nobes, L. Radom and C.E. Woodward, J. Org. Chem., 47 (1982)
1869.

P. Carsky, B.A. Hess, Jr., and L.J. Schaad, J. Am. Chem. Soc., 105 (1983) 396.

J.J. Novoa, J.J.W. McDouall and M.A. Robb, J. Chem. Soc. Faraday Trans. 2, 83 (1987)
1629.

F.J. Lovas and R.D. Suenram, Chem. Phys. Lett., 51 (1977) 453.

R.D. Suenram and F.J. Lovas, J. Am. Chem. Soc., 100 (1978) 5117.

D. Cremer, J. Am. Chem. Soc., 101 (1979) 7199.

G. Karlstrom, S. Engstrom and B. Jonsson, Chem. Phys. Lett., 67 (1979) 343.

K. Yamaguchi, S. Yabushita, T. Fueno, S. Kato, K. Morokuma and S. Iwata, Chem.
Phys. Lett., 71 (1980) 563.

J. Catalan, F. Escudero, J. Laso, O. Mo and M. Yanez, J. Mol. Struct., 69 (1980) 217.
J.S. Francisco and I.H. Williams, Chem. Phys., 93 (1985) 71.

J. Gauss and D. Cremer, Chem. Phys. Lett., 133 (1987) 420.

P. Politzer, R. Bar-Adon and R.S. Miller, J. Phys. Chem., 91 (1987) 3191.

D. Cremer, T. Schmidt, J. Gauss and T.P. Radhakrishnan, Angew. Chem., 100 (1988)
431.

D. Cremer, J. Am. Chem. Soc., 103 (1981) 3627.

S.I. Chan, J. Zinn, J. Fernandez and W.D. Gwinn, J. Chem. Phys., 33 (1960) 1643.

S.I. Chan, J. Zinn and W.D. Gwinn, J. Chem. Phys., 34 (1961) 1319.

R.A. Creswell and I.M. Mills, J. Mol. Spectrosc., 52 (1974) 392.

R.A. Creswell, Mol. Phys., 30 (1975) 217.

A. Danti, W.J. Lafferty and R.C. Lord, J. Chem. Phys., 33 (1960) 294.

S.I. Chan, T.R. Borgers, J.W. Russell, H.L. Strauss and W.D. Gwinn, J. Chem. Phys., 44
(1966) 1103.

H. Wieser, M. Danyluk and R.A. Kydd, J. Mol. Spectrosc., 43 (1972) 382.

R.A. Kydd, H. Wieser and M. Danyluk, J. Mol. Spectrosc., 44 (1972) 14.

J. Jokisaari and J. Kauppinen, J. Chem. Phys., 59 (1973) 2260.

T. Ueda and T. Shimanouchi, J. Chem. Phys., 47 (1967) 5018.

W.H. Green, J. Chem. Phys., 52 (1970) 2156.

H. Wieser and M. Danyluk, Can. J. Chem., 50 (1972) 2761.

W. Kiefer, H.J. Bernstein, M. Danyluk and H. Wieser, Chem. Phys. Lett., 12 (1972) 605.
H. Wieser, M. Danyluk, W. Kiefer and H.J. Bernstein, Can. J. Chem., 50 (1972) 2771.
L.L. Combs and M. Holloman, J. Phys. Chem., 79 (1975) 512.



44

78 L.L. Combs and M. Rossie, Jr., J. Mol. Struct., 32 (1976) 1.
79 P. Felker, D.M. Hayes and L.A. Hull, Theor. Chim. Acta, 55 (1980) 293.
80 N.L. Allinger, S.H.-M. Chang, D.H. Glaser and H. Honig, Isr. J. Chem., 20 (1980) 51.
81 I. Foltynowicz, J. Konarski and M. Kreglewski, J. Mol. Spectrosc., 87 (1981) 29.
82 1. Foltynowicz, J. Mol. Spectrosc., 96 (1982) 239.
83 G. Banhegyi, P. Pulay and G. Fogarasi, Spectrochim. Acta, Part A, 39 (1983) 761.
84 V. Szalay, G. Banhegyi and G. Fogarasi, J. Mol. Spectrosc., 126 (1987) 1.
85 R.F. Ziircher and Hs.H. Giinthard, Helv. Chim. Acta, 38 (1955) 849.
86 R.F. Ziircher and Hs.H. Giinthard, Helv. Chim. Acta, 40 (1957) 89.
87 J. Le Brumant, C.R. Acad. Sci., Ser. B, 267 (1968) 946.
88 H. Wieser, M. Danyluk, R.A. Kydd, W. Kiefer and H.J. Bernstein, J. Chem. Phys., 61
(1974) 4380.
89 R.A. Kydd, H. Wieser and W. Kiefer, Spectrochim. Acta, Part A, 39 (1983) 173.
90 L.A. Hossenlopp and D.W. Scott, J. Chem. Thermodyn., 13 (1981) 405.
91 R.F. Curl, T. Ikeda, R.S. Williams, S. Leavell and L.H. Scharpen, J. Am. Chem. Soc., 95
(1973) 6182.
92 L.B. Harding and W.A. Goddard III, J. Am. Chem. Soc., 102 (1980) 439.
93 R. Hilal, Int. J. Quantum Chem., 19 (1981) 805.
94 K. Yamaguchi, S. Yabushita and T. Fueno, Chem. Phys. Lett., 78 (1981) 572.
95 M. Hotokka, B. Roos and P. Siegbahn, J. Am. Chem. Soc., 105 (1983) 5263.
96 V.P. Novikov and A.I. Malyshev, Zh. Prikl. Spektrosk., 33 (1980) 545.
97 M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 97 (1975) 3978.
98 C.-C. Chen and M.A. Fox, J. Comput. Chem., 4 (1983) 488.
99 H.E. O’Neal and W.H. Richardson, J. Am. Chem. Soc., 92 (1970) 6553.
100 W.H. Richardson, J. Org. Chem., 54 (1989) 4677.
101 W.J. Lafferty, D.W. Robinson, R.V.St. Louis, JW. Russell and H.L. Strauss, J. Chem.
Phys., 42 (1965) 2915.
102 J.A. Greenhouse and H.L. Strauss, J. Chem. Phys., 50 (1969) 124,
103 H.J. Geise, W.J. Adams and L.S. Bartell, Tetrahedron, 25 (1969) 3045.
104 A. Almenningen, H.M. Seip and T. Willadsen, Acta Chem. Scand., 23 (1969) 2748.
105 H.M. Seip, Acta Chem. Scand., 23 (1969) 2741.
106 G.G. Engerholm, A.C. Luntz, W.D. Gwinn and D.O. Harris, J. Chem. Phys., 50 (1969)
2446.
107 D. Cremer, Isr. J. Chem., 23 (1983) 72.
108 A. Palm and E.R. Bissell, Spectrochim. Acta, 16 (1960) 459.
109 D.W. Scott, J. Chem. Thermodyn., 2 (1970) 833.
110 J. Derouault, M.T. Forel and P. Maraval, Can. J. Spectrosc., 23 (1978) 67.
111 J.M. Eyster and E.W. Prohofsky, Spectrochim. Acta, Part A, 30 (1974) 2041.
112 Z.U. Rehman and L.L. Lee, Fluid Phase Equilib., 22 (1985) 21.
113 B.V. Lebedev, I.B. Rabinovich, V.I. Milov and V.Ya. Lityagov, J. Chem. Thermodyn., 10
(1978) 321.
114 W.H. Green, J. Chem. Phys., 50 (1969) 1619.
115 J.R. Durig, R.O. Carter and L.A. Carreira, J. Chem. Phys., 59 (1973) 2249.
116 J.R. Durig, Y.S. Li and C.K. Tong, J. Chem. Phys., 56 (1972) 5692.
117 R. Cervellati, A. Degli Esposti, D.G. Lister, J.C. Lopez and J.L. Alonso, J. Mol. Struct.,
147 (1986) 255.
118 T. Ueda and T. Shimanouchi, J. Chem. Phys., 47 (1967) 4042.
119 L.A. Carreira and R.C. Lord, J. Chem. Phys., 51 (1969) 3225.
120 T.B. Malloy, Jr., J. Mol. Spectrosc., 44 (1972) 504.
121 L.A. Carreira, .M. Mills and W.B. Person, J. Chem. Phys., 56 (1972) 1444.
122 T.B. Malloy, Jr., and L.A. Carreira, J. Chem. Phys., 71 (1979) 2488.
123 J.R. Durig and L.A. Carreira, J. Chem. Phys., 56 (1972) 4966.



45

124 D.F. Bocian, G.A. Schick and R.R. Birge, J. Chem. Phys., 75 (1981) 3215.

125 R.M. Villamanan, J.C. Lopez and J.L. Alonso, Chem. Phys., 115 (1987) 103.

126 K. Tamagawa and R.L. Hilderbrandt, J. Am. Chem. Soc., 106 (1984) 20.

127 B. Fortunato, Gazz. Chim. Ital., 106 (1976) 799.

128 B. Bak, D. Christensen, W.B. Dixon, L. Hansen-Nygaard, J.R. Andersen and M.
Schottlénder, J. Mol. Spectrosc., 9 (1962) 124.

129 F. Mata, M.C. Martin and G.O. Serensen, J. Mol. Struct., 48 (1978) 157.

130 G. Wlodarczak, L. Martinache, J. Demaison and B.P. Van Eijck, J. Mol. Spectrosc., 127
(1988) 200.

131 P.B. Liescheski and D.W.H. Rankin, J. Mol. Struct., 196 (1989) 1.

132 F. Torok, A. Hegedus and P. Pulay, Theor. Chim. Acta, 32 (1973) 145.

133 J. Kao, D. Leister and M. Sito, Tetrahedron Lett., 26 (1985) 2403.

134 F.R. Cordell and J.E. Boggs, J. Mol. Struct., 164 (1988) 175.

135 B. Bak, S. Brodersen and L. Hansen, Acta Chem. Scand., 9 (1955) 749.

136 J.M. Orza, M. Rico and M. Barrachina, J. Mol. Spectrosc., 20 (1966) 233.

137 M. Rico, M. Barrachina and J.M. Orza, J. Mol. Spectrosc., 24 (1967) 133.

138 J. Loisel and V. Lorenzelli, Spectrochim. Acta, Part A, 23 (1967) 2903.

139 B.N. Cyvin and S.J. Cyvin, Acta Chem. Scand., 23 (1969) 3139.

140 L.A. Evseeva, A.G. Finkel, LM. Sverdlov and L.V. Pronina, Zh. Prikl. Spektrosk., 10
(1969) 614.

141 D.W. Scott, J. Mol. Spectrosc., 37 (1971) 77.

142 J. Loisel, J.P. Pinan-Lucarre and V. Lorenzelli, J. Mol. Struct., 17 (1973) 341.

143 C. Pouchan, J. Raymond, H. Sauvaitre and M. Chaillet, J. Mol. Struct., 21 (1974) 253.

144 J. Banki, F. Billes and A. Grofcsik, Acta Chim. Hung., 116 (1984) 283.

145 G.B. Guthrie, Jr., D.W. Scott, W.N. Hubbard, C. Katz, J.P. McCullough, M.E. Gross,
K.D. Williamson and G. Waddington, J. Am. Chem. Soc., 74 (1952) 4662.

146 B. Soptrajanov, Croat. Chem. Acta, 40 (1968) 241.

147 T. Kondo, M. Tanimoto, M. Matsumoto, K. Nomoto, Y. Achiba and K. Kimura,
Tetrahedron Lett., 21 (1980) 1649.

148 P. Rademacher and W. Elling, Liebigs Ann. Chem., (1979) 1473.

149 L. Carballeira, R.A. Mosquera and M.A. Rios, J. Comput. Chem., 10 (1989) 911.

150 J.R. Durig and W. Wertz, J. Chem. Phys., 49 (1968) 675.

151 P.A. Baron and D.O. Harris, J. Mol. Spectrosc., 49 (1974) 70.

152 C.A. De Lange, J. Magn. Reson., 21 (1976) 37.

153 Q. Shen, T.L. Mathers, T. Raeker and R.L. Hilderbrandt, J. Am. Chem. Soc., 108 (1986)
6888.

154 D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1358.

155 A. Skancke and L. Vilkov, Acta Chem. Scand., Part A, 42 (1988) 717.

156 N.L. Allinger and D.Y. Chung, J. Am. Chem. Soc., 98 (1976) 6798.

157 L. Nerskov-Lauritsen and N.L. Allinger, J. Comput. Chem., 5 (1984) 326.

158 M. Van Duin, M.A. Hoefnagel, JM.A. Baas and B. Van de Graaf, Recl. Trav. Chim.
Pays-Bas, 106 (1987) 607.

159 P. Iratcabal and D. Liotard, J. Am. Chem. Soc., 110 (1988) 4919.

160 S.A. Barker, E.J. Bourne, R M. Pinkard and D.H. Whiffen, J. Chem. Soc., (1959) 802.

161 G.A. Clegg and T.P. Melia, Polymer, 10 (1969) 912.

162 J.Z. Gillies, C.W. Gillies, R.D. Suenram and F.J. Lovas, J. Am. Chem. Soc., 110 (1988)
7991.

163 J. Zozom, C.W. Gillies, R.D. Suenram and F.J. Lovas, Chem. Phys. Lett., 140 (1987) 64.

164 J. Renard and S. Fliszar, J. Am. Chem. Soc., 92 (1970) 2628.

165 R.A. Rouse, J. Am. Chem. Soc., 95 (1973) 3460.

166 G. Klopman and P. Andreozzi, Bull. Soc. Chim. Belg., 86 (1977) 481.

167 P.C. Hiberty, J. Am. Chem. Soc., 98 (1976) 6088.



46

168 P. Ruoff, J. Almlf and S. Saebe, Chem. Phys. Lett., 72 (1980) 489.

169 P. Ruoff, S. Saebe and J. Almlsf, Chem. Phys. Lett., 83 (1981) 549.

170 D. Cremer, J. Chem. Phys., 70 (1979) 1898.

171 M.L. McKee and C.M. Rohlfing, J. Am. Chem. Soc., 111 (1989) 2497.

172 C.K. Kohlmiller and L. Andrews, J. Am. Chem. Soc., 103 (1981) 2578.

173 C.W. Gillies and R.L. Kuczkowski, J. Am. Chem. Soc., 94 (1972) 6337.

174 R.L. Kuczkowski, C.W. Gillies and K.L. Gallaher, J. Mol. Spectrosc., 60 (1976) 361.

175 D. Cremer, J. Am. Chem. Soc., 103 (1981) 3619.

176 A. Almenningen, P. Kolsaker, HM. Seip and T. Willadsen, Acta Chem. Scand., 23
(1969) 3398.

177 H. Kiihne and Hs.S. Giinthard, J. Phys. Chem., 80 (1976) 1238.

178 M. Hawkins, C.K. Kohlmiller and L. Andrews, J. Phys. Chem., 86 (1982) 3154.



